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SUMMARY

In studies of association between genetic markers and a disease, the transmission disequilibrium
test (T'DT) has become a standard procedure. It was introduced originally as a test for linkage in the
presence of association and can be used as a test for association under appropriate assumptions. The
power of the TDT test for association between a candidate gene and disease depends on the
underlying genetic model and the TDT is the optimal test if the additive model holds. Related
methods have been obtained for a given mode of inheritance (e.g. dominant or recessive). Quite often,
however, the true model is unknown and selection of a single method of analysis is problematic, since
use of a test optimal for one genetic model usually leads to a substantial loss of power if another
genetic model is the true one. The general approach of efficiency robustness has suggested two types
of robust procedures, which we apply to TDT-type association tests. When the plausible range of
alternative models is wide (e.g. dominant through recessive) our results indicate that the maximum
(MAX) of several test statistics, each of which is optimal for quite different models, has good power
under all genetic models. In situations where the set of possible models can be narrowed (e.g.
dominant through additive) a simple linear combination also performs well. In general, the MAX has
better power properties than the TDT for the study of candidate genes when the mode of inheritance
is unknown.

INTRODUCTION

The transmission disequilibrium test (TDT) described in Spielman et al. (1993) was developed as
a test of linkage between a marker locus and a disease in the presence of allelic association, and can
also be used in testing for association between a candidate gene and a disease. The TDT followed
earlier work (Rubinstein ef al. 1981 ; Field et al. 1986; Falk & Rubinstein, 1987 Ott, 1989; Thomson
et al. 1989; Terwilliger & Ott, 1992) on identification of disease loci by combining both the linkage
and population association approaches. Population substructure does not affect the use of the TDT
as a test for linkage. The TDT is valid as a test for association when simplex families are studied,
however, under certain circumstances it will detect association due to population substructure (see
scenario 3 in Ewens & Spielman, 1995). For a further discussion of these issues see Spielman & Ewens
(1996) and Curnow, Morris & Whittaker (1998).

By focusing on a specific genetic model in the candidate gene setting more powerful tests can be
obtained. Schaid & Sommer (1994) derived TDT-type statistics that are, respectively, most powerful
for dominant and recessive models, and showed that the TDT is optimal under an additive or
multiplicative model. Since the underlying genetic model is usually not known in advance, there is
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a need to develop a test that has high power over the set of plausible genetic models. Results from
efficiency robustness (Gastwirth, 1966; Gastwirth & Freidlin, 2000; Shih & Whittemore, 2001)
suggest two possible procedures. When the underlying genetic model can range from a recessive to
a dominant one, the maximum of several test statistics is shown to have good power under all genetic
models. When the set of plausible models is smaller, e.g. can range from additive to dominant, a
simple linear combination performs well.

MODELS AND TESTS

Schaid & Sommer (1993, 1994) developed a likelihood approach to testing for association between
a candidate gene and a discase. One affected child per family and both parents are sampled and
genotyped. By conditioning on parental genotypes they obtained tests that do not require the
assumption of Hardy—Weinberg equilibrium (HWE). In the candidate gene setting, conditioning on
the parental genotypes implies that the contributions from the two parents are independent under
the null hypothesis of no association between the disease and candidate gene. Denote the candidate
disease allele by D, its complement (normal allele) by d and the population frequency of D by p. There
are 6 different mating types (1) DD x DD, (2) DD x Dd, (3) DD x dd, (4) Dd x Dd, (5) Dd x dd, and (6)
dd x dd. Let f, = P(DS|dd), f, = P(DS|Dd) and f, = P(DS|DD) denote the penetrances, where DS is the
event that an individual has the disease. In terms of relative risks r, = f,/f, and r, = f,/f, the four
basic genetic models are (1) dominant (D): r; = r, r, = 7, (2) recessive (R): r, = 1, r, = r, (3) additive
(A): r, =7, ry, = 2r—1, (4) multiplicative (M): r, = r, r, = 7% Conditional on the parental mating
type, the distributions of the case genotype do not require HWE to hold. For mating types 1, 3 and
6 these conditional distributions are degenerate, with only one offspring genotype possible: these
matings are thus not informative. For mating type 2 the two possible disease case genotypes, DD and
Dd, have binomial distribution with parameter P(case = DD|mating type = 2) =r,/(r,+7r,). For
mating type 4 the three possible case genotypes, DD, Dd and dd, have a trinomial distribution with
parameters P(case = DD|mating type = 4) = r,/(2r,+r,+1) and P(case = Dd|mating type = 4) =
2r,/(2r,+7,+1). For mating type 5 the two possible disease case genotypes, Dd and dd, have
binomial distribution with parameter P(case = Dd|lmating type = 5) = r,/(r,+ 1). Each of the models
is parameterized in terms of the single parameter r, specifying the potential increased risk of disease.
Thus the null hypothesis of no association between the disease and the candidate gene, ie. f, =
f1 = fo, reduces to testing H,: 7 = 1 vs. H;:r > 1. Note again that in certain circumstances, a positive
association may be due to population subdivision. An efficient score statistic (Rao, 1973) can be used
to obtain an optimal test. For the four basic models D, B, M and A (Table 1), the statistics are (see
appendix A):

7 = (Mgy + Mgy — 31y /4) + (15, —75/2) (1)
P V31, J16+ 1, /4 ’
_ (g —ny/2) + (ngy — 1y /4)
2R = Ta T30, /16 (2)
Z =Ty = (nzz—"nn)+2(n42"n4o)+(n51_n50), 3)

Vi, + 20, + 1y

where n, is the total number of affected from parental mating type ¢ and n,; is the number of affected
from parental mating type ¢ that have j D alleles. Note that test statistics Z , and Z,; are equivalent
to the TDT. Efficient score tests attain their optimal properties as the parameter of interest
converges to its null value, i.e. r —> 1. As the first order Taylor series approximation of r/? near
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Table 1. Probabilities of case genotypes for the four models given mating types

Conditional probability

Case
Mating type Genotype Counts D R A M
2: DD xDd DD Ny 1/2 r/(r+1) (2r—1)/(3r—1) r/(r+1)
Dd gy 1/2 1/(r+1) r/(3r—1) 1/(r+1)
4: Dd x Dd DD Nyp r/(3r+1)  r/(r+3) (2r—1)/4r r2/(r41)2
Dd o 2r/(3r+1) 2/(r+3) 1/2 2r/(r+1)*
dd Tgo 1/(Br+1)  1/(r+3) 1/4r 1/(r+1)?
5: Ddxdd Dd Ny r/(r+1) 1/2 r/(r+1) r/(r+1)
dd gy 1/(r+1) 1/2 1/(r+1) 1/(r+1)
REC {r,=1)  MUL (r,=r,3) ADD (rz=25,-1)
8
DOM (r=ry)
6
f2
4-
2
(1,1 Ho
0 T T T T
0 2 4 6 8

Fig. 1. Four genetic models in the (r, ;) plane.

r=1is (1+7r)/2 the additive and multiplicative models are essentially the same (see also Figure 1
and the accompanying discussion). This explains the equivalence of Z, and Z,,.

Tn most situations, however, the true underlying model is unknown and selection of a single
method of analysis is problematic since use of any one optimal test may lead to a loss of power under
another model. A test is efficiency robust over a class of models if its relative efficiency compared to
the optimal test for each of the models is high when the data come from that model. As the efficiency
of a test is defined in terms of its power to detect a local alternative, such procedures typically have
good power properties over the range of the possible models. The Maximin Efficiency Robust Test
(MERT) has the highest minimum efficiency relative to the optimal tests (Gastwirth, 1966, 1985) and
was used in Gastwirth & Freidlin (2000) to examine tests based on affected sib-pairs and triples
proposed by Whittemore & Tu (1998). The MERT is obtained as a linear combination of the various
optimal test statistics given above. In many cases it is equal to the standardized sum of the test
statistics optimal for the two most extreme models (extreme pair). Alternatively, the maximum of -
several optimal test statistics (MAX) is sometimes employed ; this approach has been shown to have
attractive power properties in a variety of applications (e.g. Tarone, 1981; Schaid & Nick, 1990;
Fleming & Harrington, 1991). Efficiency robust principles suggest that the test statistics for the
extreme models be used. Furthermore, when their null-correlation is low the optimal test statistic for
an intermediate model should be included. While the distributional properties of the MAX’are; more..
complicated than those of asymptotically normal test statistics, wide availability of : powerful‘_";
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software has resulted in their increased popularity in recent years. Both methods depend on the null
correlation of the optimal statistics of their components. A short review of these robust methods is
provided in appendix B.

First, consider a family of four models D, R, 4 and M. The null correlation matrix of the test
statistics Z,,, Zp and Z , when the null hypothesis of no association, i.e. Hy: r = 1, (i.e., f, = f, = f,)
is (details available upon request):

Z, Z, Z,
Ny 2n,+2ng
V3, + 40,V 3n, +4n, V3n,+AngVn,+2n,+ny @)
2n, +2n,
1 V3n, +4n,vVn, +2n, + ng
1

From the correlation structure it is easy to show that the correlation between the test statistics Z;,
and Z is the smallest and has an upper bound of 1/3. Figure 1 gives a graphical representation of
the four genetic models in the (r,, 7,) plane. Dominant, recessive and additive models are represented
by corresponding rays and the multiplicative model by a quadratic curve with origin at (1,1), the null
hypothesis. All other genetic models for various values of r; and r, are represented by rays with the
same origin lying between the dominant and recessive models. Using the results of Gastwirth (1985)
it can be shown that the MERT for the entire family is the MERT for the extreme pair, the two least
correlated test statistics in the family, Z,, and Z, (results are available on request):

Zp+Zy

MERT = o7 7))

(5)

Furthermore, it can be shown that the addition of the multiplicative model to the family does not
change the MERT (details are available on request).

From (4) and (5) one can show that the correlation between the MERT statistic and the TDT
statistic is given by

_corr(Zp, TDT) + corr(Zy, TDT)
corr(MERT, TDT) = VI T oonZ, Z,)

This correlation depends on the proportions of the various parental mating types, which in turn
depend on the frequency (p) of the candidate allele. Assuming HWE, the correlation between the
MERT statistic and the TDT statistic ranges from 0.73 when p = 0.001 to 0.95 when p = 0.20.

The minimum correlation, p°, of the optimal statistics for the potential models reflects how broad
the family is. When the family of possible genetic models is large, e.g. ranging from recessive to
dominant, this minimum correlation is low, so prior results of Freidlin, Podgor & Gastwirth (1999),
reviewed in Shih & Whittemore (2001), indicate that the MAX should have higher power across the
range of models than the MERT.

SIMULATION STUDY

To evaluate the MERT and MAX tests we conducted simulations under various scenarios
corresponding to situations where allele frequency p is constant across the families (HWE holds), as
well as situations where the assumption of random mating is violated, i.e. p varies across population
subgroups. First, we generated the genotypes of the parents and one offspring. If the child was
affected, the trio was included in the sample. The process was repeated until the stated sample size
was obtained.
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Table 2(a). Empirical power estimates: HWE holds, p = 0.2 (sample size 100, 5000 replications)

Test
Under Z, MERT MAX MERT MAX MERT MAX
model  Z, Z, (IDT) (D,R,4) (DR, 4) (D, 4) (D, 4) (R A4) (B A
H, 0.049 0.047 0.049 0.050 0.046 0.049  0.050 0.048 0.051
Dt 0.812 0.068 0.720 0.535 0.734 0.790  0.790 0.356  0.625
R? 0.067 0.862 0.492 0.663 0.797 0.233 0.429 0.787 0.821
A® 0.778 0.258 0.811 0.734 0.756 0.820 0.812 0.613 0.732
M 0.669 0.433 0.799 0.775 0.743 0.762 0.778  0.715 0.749

Model Dominant f, = 0.02 f, = 0.045 f, = 0.045.
*Model Recessive f, = 0.02 f, = 0.02 f, = 0.077.
5Model Additive f, = 0.02 f, = 0.0425 f, = 0.065.
‘Model Multiplicative f, = 0.02 f, = 0.038 f, = 0.0722.

Table 2(b). p-values of Z, (TDT) vs. MAX(D, R, A) (5000 replications)

Under dominant MAX

Z, (TDT) < 0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 2086 245 0 0
0.01-0.05 380 652 215 23
0.05-0.1 21 189 122 169
> 0.1 9 88 121 680
Recessive MAX

Z, (IDT) < 0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 1232 74 0 0
0.01-0.05 860 226 62 6
0.05-0.1 332 132 51 56

> 0.1 648 478 241 602
Additive MAX

Z, (TDT) < 0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 2542 400 0 0
0.01-0.05 133 608 331 40
0.05-0.1 7 61 93 201
> 0.1 4 24 49 507
Multiplicative MAX

Z, (TDT) < 0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 2406 484 0 0
0.01-0.05 110 633 327 35
0.05-0.1 9 46 77 239
> 0.1 2 26 51 555

Tables 2(a)—4{a) present empirical power estimates of the three optimal test statistics, Z,,, Z5, Z,,,
the MERT and MAX for the entire family, as well as MERT and MAX tests for the families where
one of the extreme models (D or R) can be ruled out. The simulations are for 0.05 level tests under
alternatives chosen so that the optimal tests have approximately 80 % power.

When the family of the possible models is wide, e.g. the entire B—D range, the minimum correlation
of the optimal test statistics is low (about 0.12 when HWE holds and p = 0.2), so we expect the MAX
to be the more robust test. An examination of Tables 2(a)—4(a) confirms this. Further insight into the
advantage of MAX over Z, (TDT) can be gained from tabulating the joint frequencies of their
p-values calculated on the same data sets. These are reported for < 0.01, 0.01-0.05, 0.05-0.1, > 0.1
categories in Tables 2(b)-4(b). The numbers in the lower left triangle indicate that the MAX attains
a lower p-value than Z, while the reverse is reflected in the upper right triangle. For the recessive
model, the MAX provides a considerable gain in power over the TDT while losing relatively little
power when the additive model holds. Indeed, Table 2(b) indicates that for the recessive model the
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Table 3(a). Empirical power estimates: HWE does not hold an equal mizture of populations with
p = 0.2 and p = 0.01 (sample size 100, 5000 replications)

Test
Under Z, MERT MAX MERT MAX MERT MAX
model Z, Zy (TDT) (D,R.A) (D,R,4) (D, A) (D,4) R, 4) (R, 4)
H, 0.051 0.044 0.052 0.047 0.049 0.052 0.0563 0.047 0.044
D! 0.800 0.065 0.703 0.509 0.719 0.778  0.777 0.330 0.613
R? 0.057 0.813 0.448 0.605 0.738 0.217  0.391 0.737  0.765
A3 0.782 0.229 0.801 0.717 0.764 0.821 0.814 0.600 0.732
M 0.587 0.372 0.726 0.699 0.662 0.692 0.698 0.635 0.669

Model Dominant f, = 0.02 f; = 0.053 f, = 0.053
*Model Recessive f, = 0.02 f, = 0.02 f, = 0.1

3Model Additive f, = 0.02 f, = 0.051 f, = 0.082
‘Model Multiplicative f, = 0.02 f, = 0.042 f, = 0.0882

Table 3(b). p-values of Z, (TDT) vs. MAX(D, R, A) (5000 replications)

Under

dominant MAX

Z, (TDT) <0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 1962 243 0 0
0.01-0.05 353 733 211 14
0.05-0.1 21 190 147 176
> 0.1 4 88 116 742
Recessive MAX

Z, (TDT) <0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 1107 79 0 0
0.01-0.05 697 260 87 8
0.05-0.1 287 135 56 77
>0.1 536 588 289 794
Additive MAX

Z, (ITDT) <0.0f 0.01-0.05 00501 =>0.1
< 0.01 2431 428 0 0
0.01-0.05 143 696 280 27
0.05-0.1 6 75 92 193
> 0.1 5 37 60 527
Multiplicative MAX

Z, (TDT) <0.01 0.01-0.05 0.05-0.1 > 0.1
< 0.01 1909 492 0 0
0.01-0.05 105 688 410 26
0.05-0.1 10 61 83 311
>0.1 10 33 55 807

p-value of MAX is < 0.01 while the p-value of Z, (TDT)is > 0.10in 13 % of the simulations. On the
other hand, under the 4 and M models, for which Z, is optimal, we did not observe any cases where
the p-value of Z, was < 0.01 and that of MAX > 0.1. The results of Tables 3 and 4, which do not
assume HWE, indicate that MAX remains the most robust test.

In situations where we can restrict the models so that either the dominant or recessive mode of
inheritance can be eliminated on scientific grounds, the MAX of Z, and Zj, (or Zp) remains the most
robust. However, the MERT or Z , are relatively efficiency robust and may be easier to apply as they
are asymptotically normal.

While Tables 24 cover simulations performed under the 4 alternative genetic models, we also
conducted a series of simulations assuming several intermediate models. The results were similar to

ones discussed and are not presented.
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Table 4(a). Empirical power estimates: HWE does not hold a 1:9 mixture of populations with
p = 0.3 and p = 0.01 (sample size 100, 5000 replications)

Test
Under Z, MERT MAX MERT MAX MERT MAX
model Z, Zig (IDT) (D,R,4) (D,R,4) D,4) (D4 (R,4) (R, 4)
H, 0.053 0.025 0.047 0.046 0.045 0.0452  0.051 0.043 0.040
Dt 0.806 0.063 0.672 0.486 0.711 0.770 0.782 0.30 0.556
R? 0.065 0.793 0.522 0.582 0.709 0.252 0.441 0.727 0.742
A3 0.773 0.229 0.792 0.695 0.746 0.817 0.806 0.552  0.698
M 0.574 0.502 0.791 0.774 0.722 0.733 0.751 0.724  0.737

1Model Dominant f, = 0.02 f, = 0.085 f, = 0.085
2Model Recessive f, = 0.02 f; = 0.02 f, = 0.169
*Model Additive f, = 0.02 f, = 0.079 f, = 0.138
4Model Multiplicative f, = 0.02 f, = 0.06 f, = 0.18

Table 4(b). p-values of Z, (TDT) vs. MAX(D, R, A) (5000 replications)

5

c'-:'i. Under

L dominant MAX

§ Z, (TDT) <001 0.01-0.05 0.05-0.1 >0.1

g < 0.01 1711 266 0 0

5 0.01-0.05 417 725 215 26

g 0.05-0.1 47 212 130 132

8 > 0.1 14 162 188 755

% Recessive MAX

2 Z, (TDT) <0.01 0.01-0.05 0.05-0.1 >0.1

§ < 0.01 1331 103 0 0

< 0.01-0.05 617 430 103 24

@ 0.05-0.1 179 195 75 91

= > 0.1 227 460 263 902

= Additive MAX

= %, (TDT) <0.01 0.01-0.05 0.05-0.1 > 0.1

° < 0.01 2204 446 0 0

N 0.01-0.05 201 720 340 50

S 0.05-0.1 14 93 85 194

o > 0.1 3 48 68 534

3 Multiplicative MAX

= Z, (TDT) <0.01 0.01-0.05 0.05-0.1 >0.1
< 0.01 2195 562 0 0
0.01-0.05 100 651 386 63
0.05-0.1 4 62 55 247
> 0.1 7 27 37 604

In designing a study it is important to remember that only mating types 2, 4 and 5 are informative
for association. Moreover, for small p (< 0.01) the expected fraction of the informative sample that
comes from mating types 2 and 4 is quite low. As Zy, is based on only those two mating types, the
number of cases actually contributing to Zj is very small. This may explain the inaccuracy of the

normal approximation to the size of Z in Table 4(a).

DISCUSSION

An alternative to using a robust test is to employ an adaptive procedure that uses the observed
data to identify the model and select the appropriate test. In this setting, an adaptive- procedure
could only produce a marginal gain in power since the power of the MAX (Zg, Z 4, Zp,) is quite close
to the power of the optimal test.
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Another approach, reviewed by Slager et al. (2001), uses likelihood ratio tests for different models
and then chooses the lowest p-value, corrected for multiple comparisons; this method is similar to
a proposal of Sham (1998). Using MAX enables one to obtain a p-value directly from its distribution.

We present an evaluation of two robust procedures based on the TDT-type association tests. The
results appear to be consistent over a variety of sampling mechanisms. When one has little

“knowledge of the underlying genetic model, our results show that MAX (Zy, Z 4, Zp) is a more robust
test. 1t provides a better protection against the loss of power under recessive (dominant) models than
the TDT or MERT do, while remaining reasonably powerful when additive or multiplicative models
hold.

When markers, rather than candidate alleles, are examined the optimal statistics are similar to the
ones considered here, however, the correlation structure also depends on the recombination fraction
between the marker and putative disease allele. Whether the efficiency robustness approach will
yield a single test with high power properties for the four models requires further study.

The MAX test should be extendable to some m-allele settings discussed, for example, by Sham &
Curtis (1995) and reviewed by Ewens (1999), if it is used to replace the TDT in the permutation test
approach of Morris ef al. (1997). When only one of the m-alleles is related to the disease, this extension
of the MAX test should be efficiency robust for the class of models considered in the two-allele
setting. However, there are many other possible genetic models in the m-allele situation, so it is not
clear that any single test will be efficiency robust for all of them. Further research is also needed to
incorporate other risk factors into the robust tests. In some situations, the age of onset may effect
the power of the TDT (Li & Hsu, 2000) and presumably would affect these tests too.

It is a pleasure to thank the referees and Professors R. Curnow, J. Whittaker, A. Morris and W. Ewens for many
helpful suggestions that greatly improved the manuscript. The research of J.L.G. was partially supported by a grant
from the National Science Foundation.

APPENDIX A

First we derive mating type 2, 4 and 5 contributions to the efficient score and information for
testing H,: r = 1 for each of the 4 genetic models using Table 1.

Mating type 2
Under the D model, mating type 2 is not informative and thus it does not contribute to the
likelihood. Under R and M models the likelihood is,

1 ; P Mg 1 Moy
1: | L ~
| [r+1] [r+1]

|
{ and
| 0log L 9
| g _1 _ 0%log L o,
| S Y 127 [
i
( \! Under the 4 model
} i 2r—1 Nop r Togy
J‘ L~ [37—1] [ST—IJ
{ a 10 L 1 a2 IOgL n
’ af " =§(n22—n21)> I(H,) __E[ or ] , =Z2.
|
|
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Mating type 4
Under the D model

~and
dlog Ll _1 8 log I an
or H, = 1(71/42-1-’)7,41 —37140), I(HO) =—F [ a,,,g ] i, = Té-l—
Under the R model
L y e 2 Mgy 1 [
r+3 r+3 r+3
and
Qlogl| _1 o log L 5
af H, 4 (3743 =1 = o), I(Hy) =— [ a;; ] o, =1i64'
TUnder the 4 model
2r—1 Paz Ar Moy i Nag
e[ (27 (5)
and
a log L 62 ].Og L n
or |Ho =Ny — Ny, L{Ho) =—E [ o ] H o 54
Under the M model
L ,,2 Ngo 27, Mgy 1 Ny
ct02)  |o+07) Lo+
and
0log L o log L n
or |, e e I(Hy) =—E [ o ] a, = 54
Mating type o
Under the D, 4 and R models
r 51 1 Ngo
L~ [ r+1 ] [ r+1 ]
and
alOgL _ 1 _ o2 IOgL _’}’L5
gl =S, L) =—E [ lo J L=

Under the R model mating type 5 is uninformative and does not contribute to the likelihood.

1563

The numerator and denominator of the efficient score tests (1-3) for each model can now be
obtained by summing the corresponding efficient scores and information contributions from each of

the 3 mating types.

APPENDIX B

Suppose the model underlying the data is not known and a family, Y:{f,;i=1,..., I} of plausible
alternative models is specified. Let Z; denote the corresponding asymptotically most powerful test
for model f,. In many situations {Z;} are asymptotically jointly multivariate normal with correlation
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matrix {p,}. The Pitman asymptotic relative efficiency (ARE) of the test Z; relative to the test Z;
when Z; is optimal is p};. The correlation matrix, {p,}, of the optimal statistics summarizes the
structure of the family of alternative models as each correlation reflects how close, statistically, the
two models are.

For any asymptotically normal test statistic Z denote its relative efficiency to the optimal test Z,
for model f; by e(Z, i). The lowest ARE that Z has when a model in ¥ is true is denoted e(Z, ¥) =
inf, ., <7 {e(Z, 9)}. The Maximin Efficiency Robust Test (MERT), satisfies e(MERT, ¥) = sup,r
[inf, o, <, {e(Z, ©)}], where T is the set of all consistent asymptotically normal test statistics for the
problem. Gastwirth (1966) showed that when the minimum correlation of the optimal test statistics
Z;, p* = min(p), is > 0 the MERT exists, is unique, and is a linear combination of the {Z;}. Another
robust test statistic is MAX = max, ., <; (%Z,). Asymptotically, under the null hypothesis, MAX is
distributed as max[MN(0, {p,})], where MN stands for multivariate normal. Freidlin, Podgor &
Gastwirth (1999) showed that when p* < 0.5, the MAX test is more powerful than the MERT, but
when p* = 0.7, there was virtually no difference in their powers.
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